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ABSTRACT

Given sectors S. = E; a. < arg E < b., 0 < JEl < p} (1 < j < v) and
J 3J -

functions . (l < j < v) such that i) U S. = {E; 0 < 1EI < }, (ii) .J = = j ]

is holomorphic in S., (iii) 6. is asymptotically zero as c - 0 in S.,J J

) 6 6 < c exp{-c / in S S for some positive( ) 6 () 6k (E 0 1 j k

numbers co , cI and X whenever S. r S * , we prove that

6.(C) < c2exp{-cl/1lx} in S. for some positive number c2 . Then,

utilizing this result, we prove that Matkowsky-condition implies the resonance

in the sense of N. Kopell under a reasonable assumption. The sufficiency of

Matkowsky-condition with regard to the Ackerberg-O'Malley resonance has been

an open question. This work gives an affirmative answer to this question in

a reasonably general case.
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SIGNIFICANCE AND EXPLANATION

The basic question is as follows:

ionsider a second-or ,. , ' lii ,ar di frential oqcuation:

(1) . X, a, '

uiider some reasonable assumptiolis on F mrid G. Let v(l:, be a solution.

Then, generally spealina, 14T- '.', -ttisfies the first order equation:

(2) F(x,O)dv/dx + G(x,O)v = 0.

.. e oroblem of findinq the relation between (1) and (2) is called the problem

of sinioular perturbations. " ii.. ,. that solutions of the equation (2)

d ,.f r.1e Parameters as solutions of (1) do. In other words,

-,omt.~iig. This phenomenon is explained by means of

%. ...:-illy, various physical phenomena exhibit similar

,~vLours. Fheri 'o ., the problem of singular perturbations has been studied

'-,ra7ii oituat-in which arises naturally in applications,
i At V , -' i:/

1 , e idc ticallv for practically all the solutions v of (1),

twho,. F and GA are related in a specific way. This exceptional case

,I 0h,, ,1~,1.r i &~of resonance. It is important to find an effectively

.o.r: o f ,r tle resonance. B. J. Matkowsky found such a condition.

f o Vwt.v .r, - r ta-, haX; been mathematically .ery difficult to prove that the

" ,ondit ion actual l, ctuararitees the resonance. The difficulty is due

to th, f.lct th'it. I luantity which is decisive in determining the resonance isI ;m i l that an-:- xistito-; mathematical tool has failed to dig this quantity

,It , i ff,,r,,t imI umt ion clarly. In this work, we shall provide

T i tv ft,,r th, w t dii q irid viwq exprssed in this descriptive

:m rr'. i r-: i t! W , I. ', irad rot with thm author of this rep,-rt.

SD
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A THEOREM CONCERNING UNIFORM SIMPLIFICATION AT A TRANSITION

POINT AND THE PROBLEM OF RESONANCE

Yasutaka Sibuya
t

1. Introduction: The main result of this paper is the following theorem:

Theorem 1.1: Let

(1.1) S. = {e; a. < arg e < b., 0 < 1EI < P, (jJJJ

be sectors in the complex E-plane, where p is a positive number and the a's

and the b's are real numbers. Let 6
1 ( ) V....6 (e) be functions of E:.

Assume that

(i) SI u$2 U ... U S - {E; 0 < l <Q

(ii) 6 (C) is holomorphic in Sj;

i-AccessinFor
(iii) 6j(E) is asymptotically zero as E -0 in S, i.e. TIS GRA&I

()< K(EEI (N - 0,1,...) in S [.TIS
Ii tiinncu:",ci

for some positive numbers KN;

(iv) if S n S 4 k, we have By_j] Di-t 1 bu i n

(1.2) 16.(E) - 6k(E)l < c 0 exp(-cl/III) in S. ) S , Avi?;'litY CC.'!

for some positive numbers co, c 1 and X. t

Then, there exists a positive number H such that

(1.3) 6j()1 < H exp(-cl/JcIX) in S., . .....

This paper was prepared while the author was at the Mathematics Research Center,

University of Wisconsin-Madison, Madison, WI 537n6.

Address: School of Mathematics, University of Minnesota, Minneapolis, MN 55455.

Partially sponsored by the National Science Foundation under Grant No. MCS7 -
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We shall prove this theorem in Section 8. (For another proof, see

J.-P. Ramis [5; Theorem ll-(i), p. 189].) In other sections, utilizing

Theorem 1.1, we shall treat the following problem:

We consider a differential equation:

(1.4) ed 2v/dx 2 + F(x,E)dv/dx + G(x,E)v = 0

where F and G are holomorphic in two complex variables x and c in a

domain:

(1.5) x , P0

where D0 is a domain in the x-plane and p0  is a positive number. We assume

that V0 contains a real interval:

(1.6) 10 = {x; -a < Re(x) < b, Im(x) = 01

where a and b are positive numbers. We also assume that

(1.7) F(x,0) = -2x

We say that the differential equation (1.4) satisfies Matkowsky-condition,

if there exists a non-trivial formal power series solution of (1.4):

(1.8) v = a(x)cm
m=0

such that all the a (x) are bounded on the real interval I0 . We also say
m 0'

that the differential equation (1.4) exhibits a resonance in the sense of

N.Kopell on I if there exists a solution v(x,c) satisfying v(b,c) = 1,

such that v(x,r) converges uniformly on I as c-*+0 to a non-trivial
0

solution of

(1.9) F(x,0)dv/dx + G(x,0)v = 0

(Cf. B. J. Matkowsky f4J and N. Kopell [21.)

-2-



We shall prove the following theorem:

THEOREM 1.2. If D0  is a disk with the center at x = 0, i.e.

(1.10) Do = {x; lxi < r0 I for some r0 > 0

Then, Matkowsky-condition implies the resonance in the sense of N. Kopell.

In our argument, the assumption that F and G are holomorphic in

(x,E) in a poly-disk (1.5) is indispensable. In our proof, we follow roughly

the guide-line given by R. McKelvey and R. Bohac [3]. It seems to us that

our results yield a sharp estimate for eigenvalues studied by P. P. N. de Groen

[1). In Section 2, we discuss a more general case.

Throughout this research, the author enjoyed lively discussions with

N. Kopell, B. J. Matkowsky and P. P. N. de Groen.

~1 -3-

.w l-



2. A standard form: Let 0 be a positive number and let P be a domain in
0

the complex C-plane which contains a real interval

(2.1) = - < Re(E) < 8, Im( ) = 01

where a and B are positive numbers.

We shall consider a linear differential equation:

(2.2) £d2v/dC 2 + f(&,c)dv/d& + g(E,c)v = 0

where f and g are holomorphic in two variables E and E in the domain

(2.3) C e , II <0

Set

(2.4) f0 (E) - f(CIO)

We assume that

(2.5) f0 (0) - 0, YO) 0 0

(2.6) Efo(C) 0 0 for Ce 1, if C & 0

Under this situation, we can write fo as

(2.7) fo0 (E) &h(&)

where h(&) is holomorphic in D and

(2.8) h(&) < 0 for & I

Let us change the independent variable by

(2.9) x = O(C) f- f (t)dtli
0

Then, (2.2) becomes

(2.10) vd2 v/dx + F(xt)dv/dx + G(x,E)v 0

where

(2.11) F(P,r) = (,)- 2,f + £o), G( ,e) = (,)-2

•1irlc. f = -2.¢', we have

(2.12) F(x,c) = -2x + ek(x,E,

-4-
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and k(x,r) and G(x,E) are holomorphic in a domain

,2.13) x1 P0

where DO  is a domain in the x-plane which contains the real interval:

(2.14) 10 = {x; -a < Re(x) < b, Im(x) = 01

where

(2.15) a - f fo(t)dt, b = -f f0 (t)dt
0 0

Another transformation:

(2.16) v = w exp{- 2 f F(tE)dt

0

takes (2.10) to
22 2 1 2 1 F

(2.17) E2d 2w/dx - {-F(x,E) + E(- - (x,E) - G(x,E))}w = 0
4 2 x

Note that

12 1 2
(2.18) 4 F + £1- DF/Dx - G) x + ER(x,e)(2.8)4 (2

wnere R is holomorphic in (2.13).

Remark: To find the domain D0, we must take into account not only singularities

of f and g, but also singularities of P. i.e. the transformation (2.91.

Ir, particular, any zeros of f0 would yield branch-points with respect to x.

ii
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3. Formal simplification: It is known that there exist three formal power

series in F:

(3.1) A(x,Ec) = A (x)Em
M=O

(3.2) B(x,e) = B x,

arid

(3.3) C(F) C m

rnoM

such that

(i) A m(x) and B m(x) are holomorphic in the domain D

(ii) C are constants;
m

(iii) the formal transformation:

(3.4) w = A(x,c)u +4 B(x,E) (sdu/dx)

takes (2.17) to

(3.5) c d 2u/dx 2- Ix 2+ EC(E1 u= 0

(iv) we have

2 2
(3.6) A 0x W (xB (x)) = identically in Do

To effect the transformation (3.4) , we differentiate both sides of (3.4)

with respect to x. Then, we derive

(3.7) cdw/dx =(FA' + (x2 +~ FC)B)u + (A + £:B')(Fdu/dx)

and

(3.8) c d 2w/dx 2 (i,(,A' + (x 2+ EC)B)' + (x 2+ r C)A + cB'))u

4 ( (FcA' 24 +x .7 rC) B) + e (A 4- EB') ') (Fdu/dx),

2 2 2 2
where 'dernotcs 3/ox. since F d w/dx ( x + FR)w, we derive the

follow irn equations; or A, P a rid C:-



.--. *-- - .... -

2- 2 2
(x + cR)A = £(A' + (x2 + cC)B)' + (x + cC)(A + EB')

(3.9)
2 +(

2

(x + ER)B = (A' + (x + cC)B) + c!A + EB')'

In particular, if we put

X -- A0  Y =XB0
0 0

we have

R0(x) -C O  RO(x - C
R0 W C0 R0 () C0dX/dx= Y, dY/dx- X

2x 2x

where R0Cx) = R(x,0). Hence
0

2 2
d(X - Y )/dx = 0 identically.

Choose C = R (0) and the initial condition: X(O) = 1, Y(0) = 0. Then, we
0

can determine A0 , B and CO  so that (3.6) is satisfied. Other coefficients
000

A m, Bm and Cm can be determined in a similar way.

By virtue of (3.6), we can solve (3.4) and (3.7) with respect to u

and Edu/dx:

(3.)u = EII(x,c)w + E1 (x,E) (cdw/dx)(3 .10) u 2

cdu/dx = E21 (x,c)w + E 22(x,)(Edw/dx)

where Ejk are formal power series in c whose coefficients are holomorphic

in D0 . In particular,
0*

E (x,0) = E (x,0) = A (x)(3.11) 11 22 0

E12(XO) = -B 0(x), E 21(x,0) =-x2B0(x

Note that

(3.12) Co = R (0) = -1 + 2 g(0,0)
0 f(0)

-0
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4. Outer expansions: A formal power series in %:

(4.1) v = a {x)

m=0 m

is called an outer expansion associated with the differential equation (2.10),

if (4.1) formally satisfies (2.10). The power series (4.1) is an outer

expansion if and only if

(4.2) --2x da 0/dx + G 0(x)a = 0 ,

-2x da /dx + G(x)am = L x) - d a (x)/dx (m > 1)
m 0 M -1

where G 0x) = G(x,0) and L m(x) is linear homogeneous in a0 ... am_ 1 and

da 0/dx, ...,da mi/dx with oefficients holomorphic in D0.

DEFINITION 4.1: The differential equation (2.10) is said to satisfy Matkowsky-

condition, if there exists a non-trivial outer expansion (4.1) such that all

the a (x) are bounded on the real interval 10 (cf. (2.14)).

LEMMA 4.2: The differential equation (2.10) satisfies Matkowsky-condition if

and only if C0  is a negative odd integer and

(4.3) C = 0 (m > 1)
M -

Proof: The transformation

(4.4) u = y exp{-x 2/(2E)}

changes (3.5) to

(4.5) Ed2y/dx - 2x dy/dx - (1 + C)y = 0

By a straight-forward computation, we can prove that the differential equa-

tion (4.5) satisfies Matkowsky-condition if and only if C0  is a negative9 odd inteqer and C 0 for m > 1.

Note also that, if all the a are bounded, then all the da /dx are
*2 m

bounded. Otherwise, d 2a /dx2 would have much worse singularities at x = 0,~m

and hence a would be unbounded (rf. (4.2)).i m+1

.1
ul II I II I II' ' _-8 -
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Finally, by manipulating with the transformations (2.16), (3.4) and (3.7),

and (3.10) together with (4.4), we can show that the differential equation

(2.10) satisfies Matkowsky-condition if and only if the differential equetior,

(4.5) satisfies the same condition. This completes the proof of Lemma 4.2.

4 -9.



5. Uniform simplification: Hereafter, we shall assum, th ,t

'I5.1) C = -p, where p is a positive ,dd i ntU

(5.2) C = 0 for m I
m

(5.3) Do = {x; jxj < r O l for some r,,0 0 .W t t , -, t

Tho assumption (5.3) means that D is a disk of radius t

at x = 0.

!.et us choose two positive numbers r arid r su,-h th,it

(5.4) 0 r < r < r 0

and that the disk

(5.5) D = {x; jxj < r 1

ontains the real interval I (cf. (2.14)).0

Let us denote by T (x, F.) the two-by-two matrix:

A(x, c:) B(x,0)

L-A' (x,&) (x2  - pl (x,C) A(x,) 4 Fk' f -

(c[. (3.4) and (3.7)). Set

uw
(5.7) U = ,L Idw/dxI

Yhirn, the formal transformation

,14)W = T(x, 'U

ork': tii' syvstem

" . ,*) -dW/dx W 1 W

Lx H(x,, ) J

:

, ~ ~t iX-Lx" -L



(x, F) E (x,-)

(5.11) T(x,2) =E 2
1 (xE) E22 (x')

(cf. (3.10)).

Set

(5.12) D = {x; xj < ri

It is known that there exist two positive numbers o and P2' a function

6(E), and a two-by-two matrix P(x,e) such that

(i) 6(F) is holomorphic in the sector

(5.13) S = {E; (arg £ < cif 0 < JE[ <

(ii) 6(E) is asymptotically zero as E - 0 in S, i.e.

(5.14) 16( )I < K N EVN  (N = 0,1,2 .... ) in S

for some positive numbers KN;

-1
(iii) entries of P and P are holomorphic in the domain

(5.15) x e De 2 e S

(iv) P (resp. P-) admits the matrix T (resp. T- 1) as an asymptotic

expansion as c - 0 in S which is valid uniformly in D2

(v the transformation

(5.16) W = P(x,E)V

takes (5.9) to

(5.17) cdV/dx = 0 ]IV

LX E e(p + (Ce) Oj

in the domain (5.15). (Cf. Y. Sibuya [61.)

Utilizing this result and manipulatinq with rotations of the disk 2

we can prove the followinq lemma:

r

Imf - -



[.I IMA 5.1: There exist sectors

(5.J -j) S. = {; a. <arq F < b., 0 < H < f ( = 1,2
] J •J

(wib,' e is a positive number and the a's and the b's are real

) furzior (n) c... (c) , and two-by-two matrices P x.

such thdt S U ... US = { 0 < < and that
___ 1 k ' <H < adta

([) C~. () is hoiomorphic in S.;

(ii . is as-mptotically zero a; E - 0 in .
___--_ _--_- J

an -1
oiii) tntrics of und P. are holomorphic in the domain

%.l'9-j) x E c c S.
J

(iv) P (rosp. P- ) admits the matrix T (resp. T-I as an

asymptotic expansion as E - 0 in S which is valid u,,iformly in 2

(v) the transformation

(5.20) W= P.(x,c)V.
J 2

takes (5.9) to

F 0 lI

(5.21-j) Lx2 
- I

in tht domain (,.19-lj.

-12-
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6. An estimate for 6.(e). In this section, as an application of our main
I

theorem (cf. Theorem 1.1), we shall derive an estimate

(6.1) 16. 01 < H. exp( - r 2 /lei) for £ E S.S= 3

where H. is a positive number. To do this, it is sufficient to prove that,
3

if S, nS.* , we havex

(6.2) 16 ( E ) - (C)l < M exp(- r 2 /IcI) for ce .S Sj£ j = z j

where M j is a positive number. To derive an estimate (6.2), we need some

preparation.

Let us consider the differential equation

(6.3) d2 z/dt 2 
- (t2 - a)z = 0, where a is a parameter

This equation admits a solution

(6.4) z = Z(t,a)

such that

(i) Z is an entire function in (t,a)

l ~ 2

(ii) lim tC ( a) etZ(ta) = 1
t -+o

uniformly in a if a is in a compact set in the a-plane.

The solution Z(ta) is uniquely determined by i) and (ii). The functions

Z((-i)t,-a), Z(-t,a), and Z(it,-a) are also solutions of (6.3). Set

(.-)(t,a) Z((-i)t,-a)
!(6.5-0) 0 (t,a) = L ,z( ~ ) ( i Z, ( i t )

. Y (t,a) (-i)Z (-i)t,-a) j

ZC((-i)t,-a) Z(-t,a) 1

(6.5-i) 4'lt,a) = -~z Cit-a -Z t,a)

L(-i)z ((-i)t,-a) -z' (-t,a)J

F Z(-t,&) Z(it,-a1
( (6.5-2) Y 2 ( t , a ) =| I

-2. L-Z' (-ta) iZ' (it,-a)J

-13-



aiad

Fzu(t,-a) Z(t,a)

where 1'otes 3'- .Those four matrices are matrices of independent

Sliatiol:, of .3).

Sl, t

a '(a+l ____ aT
(6.6) \ (a) 2 0 (al, (, (ae

7: -a)) 2

a nd

2\ (a) 01

Trhen,

f ry (t,a) 'i (t,a'IC(a), (t,a) ='2(t,a)C(-a)

i2(t~a) = (t,a)C(a), 'f-(t,a) i (t,a)C(-a)

0ix ardjso that S, *~ Choose. a branch of i r, tnh

sector S, S . t

10 0

, (.X,.) .' (X/ p +
16-1)(h =-1,(),1,2)

(x h) (X,/ , .+

mn ~ , (X, (x,,' and (X fx) (resp. (Xv)

rx,c) andi (x,,)) are furadamerartal matrix solutions of

* ~r'-c. H.1-i)) 'iu'h that

-14-



€,(x,) = ¢,(X,E)C(p + S'(0)

¢ , (xC) = (, x,)C(-p - 6 (e))

(6.11-k) , (x,c) = ( , _(X,E)C(p + S (E
1,2 k,-

¢[,_(X,t) = ¢ ,(x,r)C(-p - S1 () ,

and

C o(X,E) = l (x,0)C(p + 6.(E))
j,0 j'1J
j1 (x,C) = t j2(x,c)C(-p- .(c))

(6.11-j) (x,c) = € (x,c)C(p + 6 (E))
ji-i J

j,-(x 'c) = Cj,(x,c)C(-p - 5. (c))

Set

71 01
(6.12) J =

and

2
(zhXc) = . X, I (x exp ?Si - j}

,,h 2 c (h = -1 ,0 ,1 ,2 )
(6.13) h x

(xc) = (x, .-)!,xl (-I) h J}

It is known that, if (x,,) J' in a domain

(6.14-h) x F D2 ' E f S. S., harg7 -V2' J ; 2 = 2

where v is a small positive number, we have

% (6.15) !I ,(x'-); I H!j q  !Qj,h(x J)-I Hf q
(X ,Q C7 < H I , h( , C) ,j j

where It is a positive number dependinq on v, q is a real number, and IL

denotes a usual norm of matric-s. Furthermore, the matrix

6.1 ) (j,h I (x, ) -
(x ,

is asymrtoticaI IIy zero a - 0 i, S S. uniformly in the domain

(6.14-h). (For thos results, cc., for example, Y. ibuya 16,71 .

-15-
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Let j, (X, ) and P.(x,E) be the matrices given in Lermna 5.1. Then,j

(x,E) arcd P.xr) (x,c) are two fundamental matrix soluticr:r
j '

F (.' in the domain

.:2x e 2 ' C f S z S

.. i,- thre exists a two-by-two matrix L(c) such that

xF , )¢ , (x,E) = P. (x,E) 0 x,E)L ( )

t, t a' .i:) dO s not depend on x. It follows from (6.1H) that

2 22(f)p{. J = Q. 0 (x,) P. (xjC) P z (xF) 0  (x

i t..., !.,mattix

2 2
0, ..2 expl- 2 JL(E)exp{l- J} 1

2cx2E 2
a;vimt-ti.ally zero as -- 0 in S uniformly in the domain

C. -)) , ,.-erf, 12 is the two-by-two identity matrix.

In tho same way (manipulating with the connection formulas (6.11--) atrI

I- 41 , we, car, Pi vc that the matrix

2 2xx
21qI ex i JIL LOexp{- - J, - 1I 2E: 2

S tot ical zi- as -* 0 in S r S. uniformly in the domain

: ,~~ .1 -h- , w-c'

" i ' .,'; [ ., '2 C = ( p [ - 6 .j( f l ( C ( p - -

xx

exp J L W eXp- 2 J2t 2 2F 2

Pr-,1% 'R'-l S' ,i ~0inS~S uniform1%y in the domaiin

-16-
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Set

L() = 
e  )  c 2 ()1

1 (E) c1 2 (E)

(6.25) LI (e) =

[C21 () c22 (C)

L2(E )  11 (C)  12(E
L22 (() 22(

Then,

(6.26) c12 () = {X (p+6 (O))c 1(e) + c 21()/X2(p £(0)

- )l(p+6 (C)){\ (p4+ .(E))C (r) + c2(E/(p+ (E)
112 22 2

and

(6.27) 21 (C) = A1 (-p-6R(j))c1 1 (C) + X2 (-p-6 Z())c 12 (C)

1 (- p  -  ((E))

S1(-p- 6.(e)) {1I(-P -Y())c21( ) + 2-p-61'(")c22 .-

2

Utilizing the fact that, for any C e S., there exists an x E

such that

(i) (x,F) is in the domain (6.14-h),

(ii) x/F" takes either a real value or a purely imaginary value,

we derive from (6.20), (6,21) and (6.23) that

(F() - 1 and c 22(c) - 1 are asymptotically zero

as F - in S. S

, (2) I .12(€)I < c exp(-r2 /IF"), Ic2 1 < e ex,(-r2 f-J.

for e S S, where c is a positive constant;i 3

j(3) le < c exp(-r/ -F) for CE , S S

(4) -2  < :" exp(-r 2 /L,-1 for cE S. .

-17-



0 t l.(( = (a) (S T hen,

(-p - c (c- - c.,(C, ) {(-p- c p)) -j(-p- 6.(c) Ic 2 2 (c-_22

e xp(-r 2  S1 S.

for some k- 0. Since (-p) 0, we have

C C () - 6 (c) + c exp(-r2/ )( .1)' ll e - 22( = 1 v+ 2

iii S S. for some :i 0 and c, 0. On the other hand,

(p ( ) - + (p cr) (El j 1 1 , 2 2

(p *c +- A (p~ +, (r k (c E 11 E)c22 W

<c exp(-r-/,r1 i in S, "S.• 3

d1
for some c > 0. Since Il(p) = 0 and da (p) * 0, we have

(6.29) !6, (E) - ( ) c (p + (E )) ell(C) - c 2 2  ( )

j3' 111 2

-4 c4 exp(-r
2/l JE) in S z Sj

for some c 3  0 and c 4  0. An estimate (6.2) follows from (6.28) and

(1- .29).

I

-1 -



7. Resonance: In this section, we shall prove Theorem 1.2. To do this,

we return to Section 5. We proved there that the transformation (5.16) takes

the system (5.9) to (5.17) in the domain (5.15). The function 6(E)

satisfies the condition (5.14). We replace (5.14) by

(7.1) 16(E)j < H exp(-r 2/Isr) in S

for some positive number H.

Set

(7(x, A (-)h(X/ p + 6(E))
(7.2) h (x, ) = A(E)T h(x/ ,p), (h -1,0,1,2)

h 'h

Then, Dh (x,) (resp. h(xc)) are fundamental matrix solutions of (5.17)

(resp. (5.10)) such that

D (x,C) = l(X, C)C(p + 6(s))

1 (x,C) 2 (x,E)C(-p - 6()) ,

(7.3) 2(x,s) P 1_ (X,s)C(p + 6(c)) ,

1 (x,s) 0 (x,s)C(-p - 6(6)) ,

and

S0(xs) = l(X,E)C(p)
0 1
l (xs) = 2(x,E)C(-p)

(7.4) 2 (xE) _ (x,s)C(p)

2 -1

(X, = (x,c)C(-p)

Set

(7.5) S (xE:) 0 (x, ) 0(x,.)-1

Then, the transformation

(7.6) V = S(x,)U

.5 takes (5.17) to (5.10. Hence, the main part of tho proof is to show that

S(x,c) - 12 is asymptotically zero as F 0 ir S uriformly ii, V . Note

-19-



t~hd r r. ', ~ ,,rn;,nir,ulo;t' ir, a way similar to the argument

if :., t ,t , t i I Fzr, } " .'t that

) 1 ),'Hl F,/ , ,. .),: -x/c are asymptotically zero as

" ' ' S if ~r ,I, ' i r 1;

-1 2 0

i L [, ' { C, , 1 (.( )
(ilr) C< -- - " :)(r-, - 12 0( ()

1ik, i[:I I on left to the reader.

2,

:1
'V
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8. Proof of Theorem 1.1: We shall prove Theorem 1.1 in the case when v = 3.

The general case can be treated in the same manner. We shall consider three

sectors S1 , S 2 S3 as shown in Figure 1.

S 1 , 2

S 3 ,1

$2,3

Figure 1

We denote by S1 ,2 S2,3, 3,1 the intersections S n S2 S2 n S3

S 3  SII respectively.

The three functions 6 (c), 62(c), (t) are holomorphic in S , SI S,
1 2 1' 2 V~3

respectively. Furthermore,

(8.1) 6.() is asymptotically zero as £ 0 in S.,

3

and

(8.2) 6, (£) - 6.() c0exp(- c 1 /i ) in S +j+1 = cep- /

where co, c1 , A are positive numbers, and S S3 1, 6 6 . We shall
03,4 3,,4

denote 6 (C) - .(c) by o.(E).

We consider a sufficiently small disk:

(8.3) V : < p0

We choose three line-segments Z Z 3 starting from 0 in su,-h a
1 21 3

way that

r (8.4) * C Sj,j+ , (Cf. Figure 2.)

-21-



Figure 2

Three line-segments 1' 2' 2' divide the disk V (cf. (8.3)) into

3

three open sectors S , S, S (cf. Figure 2). The boundaries of S , S S

(8.5-j) Q. - Y - 2., J = 1,2,3 ,

(8.6) Y1 +y 2 + y 3  C = {; InI =  0

The line-segments Z. arnd the circular arcs y. are oriented as indicated

] 3

in Figure 2. We assume that is so small that

(8.7) S. C S. ,

J J
where S. denotes the closure of S..

1 2 3

(8.5-) j(e) Y if : z S. =1,,

Sefo f 2 3

33

(87 .) S . (

Set for C E 2US3

-2-4

( R- l ,, .. 8 ) , ,i l i l, , , , i ,, . ..f



3 F-( )

E -) -1 dC in S U)S t) S2ij=l Zj j-Z1 2 3

Utilizing

N N+l
1 N (m+l) m E

- E Y l
m=O _)

we derive

m=0 j=l kj.l+j (Z

3N+1

3

+ 2- j=l Z j-l+Y j-j NI ( _

Sne6(c) is asymptotically zero as 6 - 0 in SlI U S 2 U S3 , thfis

term must be zero, and hence

5 ( ) 1 .(r) d N+I

j=l jl+yj-£ - E)

Thus we arrive at the following formula:

(8.9) f(3) =2- d f
2i Z N( E) C FN -

for E E Sl S S and N 1,2,3,..., where .7 - 6.
U 2 a j+l

Construct three open sectors Sl' S2 ' S3 as shown in Figure 3, where

0 < 1 < P0 and e is a small positive number. Then,

C
SCN(u _ £) = - 0  1

0p0
ard

-23-

- . .- ....



S.
3

0" 0 
radius--.

radiusr

Figure 3

_ _ 0 0 N-i3 dc[ t-N- exp (_c t- )dt

-N ) sin

0 -

< - f T N )exp(-cl )dT

0

00 -(N/A)
A 0- e f(N/A)

sin 6 'l

fr U S U S3 where CO  is a positive number. Since

< C (N/A) (N/A) -(N/X)
P(N/A)=C(/) e

for 0om < C 0, we have

% t,-:.O 1 (s~ ,: 2[] ] N /, -(N/)

2 c x  e

Hfor S I U S2 U S3; C I  is a positive number. For a given F, choose

N so t ha-t
, 

C

N< C_1 < N + I

i I, i t fo]lows from ( - .10) that

.. e()I exp(- C /If-2 1
,'ho(-' '1' '2' '3 ii, various ways, we can complete the proof of Theorem I . I.
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